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Background

Under the Prediction and Data Assimilation for Cloud (PANDA-C) project, which is 
funded by the US Air Force and aimed at cloud analysis and forecasting, a variational data 
assimilation (DA) system is being developed for Model for Prediction across Scales (MPAS) 
model, within the Joint Effort for Data Assimilation Integration (JEDI) framework. This 
article summarizes the development of a multivariate static background error covariance 
(B) for MPAS within JEDI. For all the diagnostics and experiments, a 120 km quasi-uniform 
MPAS mesh (of 40,962 horizontal cells) is configured with 55 vertical levels with 30 km 
model top. 

Multivariate background error covariance design

The basic design of the MPAS multivariate background error covariance follows that of the 
Weather Research and Forecasting (WRF) model DA (WRFDA; Barker et al. 2012) system 
and the Gridpoint Statistical Interpolation (GSI; Wu et al. 2002) system. The multivariate 
properties are implemented as a set of linear variable changes to a block-diagonal covariance 
matrix as: B=K1K2ΣCΣTK2

TK1
T. The linear variable changes K1 and K2 can be expressed in the 

following matrix forms: 
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Here, K1 computes increments for zonal wind (u) and meridional wind (v) from spatial 
derivatives of stream function (ψ) and velocity potential (χ). K1 and the corresponding 
adjoint operator, K1

T are the model-dependent JEDI component that operates on the MPAS 
native mesh. 

K2 is a variable change to compute the balanced contributions from ψ to χ, temperature (T), 
and surface pressure (ps) based on linear regression, and adds those contributions to the 
unbalanced variables chi_u, T_u and p_s,u, which are assumed uncorrelated. The use of 
vertical regression to define the balanced contributions follows Derber and Bouttier (1999). 
As in Derber and Bouttier (1999), we choose to use ψ on the full set of vertical levels as 
predictors for T and ps on a given level, which makes M and N as full matrices. We retain ψ 
only on the same level as a predictor for χ, which makes L as a diagonal matrix. Note that the 
specific humidity (sh) does not have a multivariate correlation with other variables. 

Lastly, ΣCΣT is the block-diagonal covariance matrix for increments of stream function ψ, 
specific humidity (Q), and the unbalanced contributions to χ, T, and ps,. It is constructed from 
Σ, a diagonal matrix with elements of standard deviation for each unbalanced variable, and 
C, a block-diagonal correlation matrix whose blocks give the univariate spatial (horizontal 
and vertical) correlation for each variable.

The operations  K2, K2
T, Σ, ΣT, and C use the Background error on Unstructured Mesh Package 

(BUMP) in the System-Agnostic Background-Error Representation (SABER) repository, 
which is a generic component within JEDI, through the MPAS model interfaces.

Diagnosed B statistics

The background error statistics are diagnosed from 366 samples of the Global Forecast 
System (GFS) 48-h and 24-h forecast differences, spanning the months of March, April, 
and May 2018. Because the inverse operation of K1 on the native mesh is not available, 
a spherical harmonics-based NCAR Command Language (NCL) function is used on an 
intermediate lat/lon grid.

For regression coefficients, the auto-covariance and cross-covariance statistics were 
aggregated within +/- 10 degrees latitude bands to reflect the latitude-dependent balance 
characteristics. Also, a pseudo-inverse with 20 dominant modes (among total 55 modes) was 
used for the inverse of the auto-covariance matrix. Figure A shows the balanced part of T,  χ, 
and ps, for a given ψ field near 34 degrees North.

Figure A: The regression 
coefficients between ψ and T, 
ψ and χ, and ψ and ps near 34 
degrees North latitude.
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Figure B shows the vertical profiles of domain-averaged background error statistics for 
ψ, χu, Tu, and sh. The error standard deviation is diagnosed from BUMP VARiance (VAR) 
procedure and the horizontal and vertical length scales are diagnosed from BUMP Hybrid 
DIAGnostics (HDIAG) procedure. Note that the vertical coordinate for vertical length 
scale is in units of levels. The horizontal and vertical length scales for all the variables, but 
especially χ, are substantially larger than reported in other studies (e.g. Wu et al. 2002).

Single observation test

To explore the structure of multivariate B, a single zonal wind observation with 1 m s-1 
innovation and 1 m s-1 observational error is placed at (102.95W, 26.57N) on the 10th 
model level, exactly on the model mesh. The resulting analysis increment fields are then 
proportional to the corresponding column of the B matrix, for a given observation. For 
comparison, we also present results from a univariate covariance matrix (of u, v, T, q, ps, 
with variances and length scales estimated as for B and from  a localized, ensemble-based 
covariance matrix. For the ensemble covariance, 20 members from The Global Ensemble 
Forecast System (GEFS) are used with the fixed localization scales (2000 km for horizontal 
and 5 levels for vertical radius). Figures C-F show the analysis increments for u, v, and T for 
the three covariance matrices on three vertical levels (6, 10, and 14th).

Figure B: Vertical profiles of 
domain-averaged (top) error 
standard deviations, (middle) 
horizontal length scales, and 
(bottom) vertical length scales for 
ψ, χu, Tu, and sh.
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The analysis increments from multivariate B reflect geostrophic balance in general: cyclonic 
(anti-cyclonic) circulation to the north (south) of the observation location and a warm 
temperature increment above the cyclonic circulation (Figure C). The analysis increment 
from univariate B has localized, isotropic structure without any increments in the unobserved 
variables (Figure D), while the analysis increment from ensemble B has the cross-variable 
covariances implicit in the ensemble of forecasts. Comparing the three analysis increments, 
the horizontal scales of increments from multivariate B are much larger than those from 
univariate B (Figure D) or ensemble B (Figure E). Also, the analysis fits the observation 
much less closely in the multivariate B test: the magnitudes of maximum U increment on 
the 10th model level (where the observation is placed) are 0.198, 0.659, and 0.497 m s-1 for 
multivariate, univariate, and ensemble covariances.

The length-scale diagnostics (HDIAG) in BUMP seek to fit the actual isotropic correlations 
to the fifth-order piecewise function of Gaspari and Cohn (1999), which resembles the 
Gaussian function. This function, however, differs from the actual correlations for stream 
function and velocity potential, which decay much more rapidly than a Gaussian at small 

Figure C: Analysis increments for 
(left) u [m s-1], (center) v [m s-1], 
and (right) T [K] on the (top) 14th, 
(middle) 10th, and (bottom) 6th 
model vertical levels from raw 
multivariate B statistics.
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separations. To deal with this issue, the diagnosed multivariate B statistics are tuned: 
reducing the horizontal length scales for stream function and velocity potential as half of 
diagnosed values. This tuning procedure makes the horizontal scales of increments smaller 
(Figure F), and also produces a larger maximum U increment (from untuned 0.198 to tuned 
0.504 at the model level 10), indicating a better fit-to-obs.

Figure D: Same as Figure C, 
except from univariate B statistics.
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Figure E: Same as Figure C, 
except from ensemble B statistics.
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Figure F: Same as Figure C, 
except from multivariate B 
statistics with tuning.
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Month-long cycling experiment

Month-long 3DVar cycling experiments using various static covariance matrices and 
assimilating the conventional observations and clear-sky AMSU-A radiances were 
performed at 120 km resolution starting from April 15 2018. Figure G shows the time-series 
of 6-hour forecast RMS error with respect to GFS analysis for surface pressure fields. In the 
northern extratropical (NXTro) region, multivariate B with tuning gives the smallest error. 
In the tropical (Tro) region, multivariate B with and without tuning give a similar error, 
but univariate B gives the largest error. In the southern extratropical (SXTro) region, the 
multivariate B with tuning gives a similar or smaller error, except for the latter 10 days.

The extended 10-day forecasts were performed at each 00 UTC and the anomaly correlation 
coefficient (ACC) for 500 hPa geopotential height fields were compared between three 
month-long cycling experiments (Figure H). Overall, the experiment with a multivariate B 
with tuning gives the largest ACC values over all lead times. These results confirm that a 
careful evaluation and tuning of diagnosed background error statistics might be needed for 
better performance.

The cycling experiments with hybrid 
covariance were also performed. In the 
experiment, the hybrid covariance was 
defined as a combination of a tuned static 
covariance and an ensemble covariance 
with equal weight, although this weight 
setting might not be an optimal choice. 
Again for ensemble covariance, 20 member 
GEFS ensembles were used with the fixed 
localization scales (2000 km for horizontal 
and 5 levels for vertical radius). Compared 
to pure static covariances, the hybrid 
covariances slightly improved the global 
500 hPa height ACC scores up to 8 days 
lead time (Figure I). The improvement in 
the ACC scores over tropical regions is 
especially noticeable. 

Figure G: Time-series of 6-hour 
forecast RMS error with respect 
to GFS analysis for surface 
pressure fields in (left) NXTro 
(30ºN - 90ºN), (center) Tro 
(30ºS - 30ºN), and (right) SXTro 
(30ºS - 90ºS) regions. UnivB: 
3DVAR experiment with univariate 
B; multiB: 3DVAR experiment 
with multivariate B; univB_tune: 
multivariate B 3DVAR experiment 
with length scale tuning.

Figure H: Global anomaly 
correlation coefficient of 500 
hPa geopotential height, 10-day 
forecast initialized at each 00 
UTC.
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Summary

A multivariate static background error covariance for MPAS model is designed by using both 
model-specific and generic components within the JEDI framework. With 366 samples, the 
multivariate B statistics are diagnosed at MPAS 120 km quasi-uniform mesh. The structure of 
B was evaluated with a series of single observation tests and compared with pure ensemble 
covariance and univariate B. The tuning (halving the horizontal length scales for stream 
function and velocity potential) improved the horizontal scales of analysis increment and 
the fit-to-obs value. This tuning was confirmed to be beneficial in the month-long cycling 
experiment. We will continue further efforts to provide a better background error covariance, 
such as using a hybrid covariance, diagnosing the optimal hybrid weights, and diagnosing 
better/optimal correlation and localization length scales using MPAS model’s own forecast. 
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1 Background

For satellite thermal infrared (IR) remote sensing applications, the spectral sea surface 
emissivity must be specified with a high degree of absolute accuracy. A 1% uncertainty in 
emissivity can result in ≈0.2–0.6 K systematic error in hyperspectral longwave IR (LWIR) 
microwindow channel observations (e.g., Wu and Smith, 1996). Furthermore, in practice, 
the forward modeling problem also involves the necessity of correctly specifying the surface 
bidirectional reflectance distribution function (BRDF), because it is convolved with the direct 
emission. Because ocean surface waves have dimensions that are large with respect to IR 
wavelengths, and the surface is uniform within the field-of-view of passive IR sensors, the 
IR emissivity and reflectance problem may be treated from first principles within physical 
models.

2 IR Forward Modeling of Ocean Surfaces

Within satellite remote sensing forward and inverse modeling, physical models for IR sea-
surface emissivity have been developed that have gained widespread acceptance (e.g., 
Masuda et al., 1988; Watts et al., 1996; Wu and Smith, 1997; Henderson et al., 2003; Masuda, 
2006), but it is important to keep in mind that this was only after they were first empirically 
validated against field measure-ments. As a result, IR ocean emissivity has since almost been 
taken for granted by many as being a “solved problem.” However, with the achievement of 
better-than 100 mK absolute accuracy in today’s traceable, onboard-calibrated thermal IR 
sensors, additional problems in thermal IR models have been identified.

2.1 Emission-Only Models

Although models of IR sea-surface emission date back to the 1960s (e.g., Saunders, 1968), 
it was not until the late 1980s that IR emissivity models would begin to gain traction, 
beginning with Masuda et al. (1988), who published their calculations within a convenient 
print-version lookup table (LUT). However, the “Masuda model” was not widely used 
because it had not been validated against observations. It was not until the advent of the 
Marine Atmospheric Emitted Radiance Interferometer (MAERI) (Smith et al., 1996; Minnett 
et al., 2001) that application of emissivity models became possible in practice. In these 
conventional, emission-based models, emissivity is taken to be the ensemble-mean of one 
minus the Fresnel reflectance of visible surface wave facets.
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2.2 Surface-Leaving Radiance Models

The problem with the approach of using these conventional emission-based emissivity 
models lies in the typical application to fast-model forward calculations (i.e., “calc”) using 
either specular or Lambertian approximations for calculating the surface-leaving radiance 
(SLR). The specular approximation is the far more common approximation for water-
surfaces, which are by definition quasi-specular, and is used by the the Community Radiative 
Transfer Model (CRTM) (van Delst et al., 2009). The Lambertian approximation may be 
conveniently applied to all surface types (land and sea), and is currently used by the Stand 
Alone Radiative Transfer Algorithm (SARTA) (Strow et al., 2003; DeSouza-Machado et al., 
2020), but may in fact be oversimplified for quasi-specular water surfaces.

Within operational fast-model frameworks, these approximations are necessary because 
the actual RTE for water surfaces involves a hemispheric double-integral over varying 2-D 
wave slopes, each of these involving a downwelling radiance calculation at an arbitrary 
zenith angle. But because of the non-linear increases of both downwelling atmospheric 
radiance and the Fresnel reflection co-efficient as a function of θ , over the normal range of 
satellite view angles it is generally the case that the specular approximation will result in an 
systematic underestimation of SLR. This systematic underestimation has been consistently 
observed in MAERI spectra at larger zenith angles (θ0 ≥ 40◦), where it is found to be on the 
order of 0.1–0.4 K in magnitude. This will also be the case for the Lambertian approximation 
for angles not equal to the assumed diffusivity angle, in addition to the likelihood of other 
biases at smaller angles.

A handful of previous investigators have sought to obtain practical solutions to the quasi-
specular forward radiance problem (e.g., Watts et al., 1996; Nalli et al., 2001), but these 
ultimately were still not satisfactory for existing operational algorithms and models. 
Thus, an alternative approach was desirable. In 2005–2006, the Joint Center for Satellite 
Data Assimilation (JCSDA) and NOAA/STAR thus supported in-house research to find a 
workable solution for application to the CRTM. This JSCDA-funded research resulted in the 
CRTM IRSSE model (Nalli et al., 2008b,a; van Delst et al., 2009). Notably, the IRSSE model 
uses the principle of effective emissivity to account for the quasi-specular BRDF in a practical 
manner for operational fast-models.

2.3 Effective-Emissivity for Fast-Models

Effective emissivity is the guiding principle behind cavity blackbodies (e.g., Prokhorov, 
2012; Schalles and Blumröder, 2012) commonly used for calibration of IR sensors. While the 
cavity’s surface is not inherently black, its macroscale roughness creates multiple emissions 
and reflections off individual finite surface elements that effectively enhances the emissivity 
of the macroscale cavity. Thus, while the inherent “optical” emissivity of the cavity’s surface 
elements are non-black, the macroscale cavity nevertheless appears black to the sensor given 
that it does not discriminate between directly emitted or multiply reflected contributions 
to the radiance. The same principle holds for any natural rough surface, including the sea 
surface.

The theoretical basis for the effective emissivity model may be derived from the conical-
directional reflectance for non-isotropic incident radiation (Nicodemus, 1965; Nicodemus 
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et al., 1977). The effective emissivity is derived as a function of an effective emission angle, 
Θe, which is obtained iteratively via least-squares spectral minimizations over finite IR 
spectral intervals ∆ν based on the exact quasi-specular RTE. In this manner, the effective 
angle is determined by bringing the simplified model into agreement with the full quasi-
specular model as a function of view angle, wind speed and SST, (i.e., θ0, ū, Ts). From Θe, the 
entire IR emissivity spectrum may then be determined and expressed as lookup tables for 
various given mean-square slope PDF models (e.g., Cox and Munk, 1954; Ebuchi and Kizu, 
2002) and complex refractive indices (Nν ). This then allows a simplified quasi-specular RTE 
for the SLR that conveniently retains the familiar 2-term, 3-parameter form. The effective 
emissivity is thus defined in a manner practical for field measurements and fast forward 
modeling, keeping in mind that it is the observable radiance, Rνs, as opposed to a theoretical 
emissivity, εν , that is the ultimate goal in forward modeling for remote sensing applications.

3 Accounting for Emissivity Temperature Dependence

While it has been known that there was a spectral dependence on surface temperature (e.g., 
Newman et al., 2005; Nalli et al., 2008a), it was not until recent findings of Liu et al. (2019) that 
a significant systematic bias (on the order of 0.5 K) was revealed to occur on a global scale 
in cold waters (i.e., the North Atlantic and Southern Oceans). The temperature dependence 
arises from changes to the refractive index of water associated with corresponding changes 
in density. This has brought attention back to this issue, which has since led to additional 
JCSDA (FY19–FY20) and JPSS support for model upgrades to address this problem.

3.1 Observed Global Biases

To investigate the global impact further, we performed a global analysis of spectral double-
differences of obs − calc using 2-weeks NOAA-20 CrIS data using to isolate the emissivity 
signal (Fig. 1) while minimizing signals due to uncertainties in the atmospheric column (e.g., 
model bias, cloud contamination, H2O errors, etc.). Using laboratory derived temperature-
dependent (T-dep) reflectance ratios reported in Pinkley et al. (1977), we were able to isolate 
spectral channels with and without sensitivity to surface temperature, namely 939.25 cm−1 
and 962.5 cm−1. The obs − calc double-differences were computed as

where TB denote estimates (i.e., calculations or background), ν0 is a spectral channel known 
to exhibit negligible emissivity sensitivity to temperature, and ν are channels known to have 
varying degrees of sensitivity. The lefthand plots of Fig. 1 show a significant, near-linear 
trend in global observation minus background (obs − calc, also denoted O − B) over the 
range of ocean surface temperatures (271–305 K), with systematic biases varying on the order 
of 0.5 K. For comparison, the righthand plots show simulated double-differences for the 
same channel combinations assuming a global mean surface temperature based on Fresnel 
calculations using T-dep optical constants derived from the Pinkley reflectance data (Nalli et 
al., manuscript in prep; see below). Comparable linear trends are observed in the simulated 
double-differences, corroborating the hypothesis that the trends seen in Fig. 1 are in fact due 
to emissivity temperature dependence. Significant surface-temperature dependence = 0.5 
K is clearly visible. Such systematic uncertainty magnitudes are of first order significance 
within the context of the total forward model uncertainty.

∆[∆TB(ν)] = [TB(ν) − TB(ν0)] − [TB(ν) − TB(ν0)],
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3.2 Temperature-Dependent Model

Temperature dependence in IR sea-surface emissivity arises from the dependence of the IR 
complex refractive index, Nν , on the water density. Thus, the model may be extended to 
include temperature dependence simply through the application of a suitable set of optical 
constants that include temperature dependence. To our knowledge, the only complete set 
of laboratory derived T-dep IR reflectance measurements of water at varying surface temps 
were obtained by Pinkley et al. (1977). However, they only published a small subset of their 
derived optical constants, severely truncated to only 3 significant digits. Later, Newman et al. 
(2005) published field-derived values for the long-wave window region of the IR spectrum, 
and most recently Rowe et al. (2020) derived values for supercooled water temperatures.

When the IRSSE upgrade was first attempted in 2018–2019, the Rowe data were not yet 
available, and a decision was made to utilize the Pinkley data due to the fact that they 
included the full IR spectrum. However, as mentioned above, their published Table I did 
not include the complete dataset, and the remaining portions suffered precision losses due 
to truncation. The lead author (Nalli) thus attempted to contact the surviving members of 
Pinkley et al. (1977) (L. W. Pinkley, P. P. Sethna, or D. Williams), but subsequently found 
that both Pinkley and Williams have unfortunately been deceased since 2004, with the 
whereabouts and status of Sethna remaining unknown.

In lieu of this, an ad hoc approach was attempted to “rescue” the data based on digitization of 
of two figures from their paper (Figures 3 and 4, op. cit.). Ultimately, images from the original 
hardbound print copies were needed because the PDF reprint was illegible for digitation 
purposes; at our request the NOAA library provided us with high-resolution scans which 
are reproduced here in Fig. 2. However, ultimately this effort was still considered to be 
sub-optimal given that these figures were not well-suited for digitization, with different 
temperature values overlapping each other at this scale, together with the image scans 
themselves being distorted from the hardbound photocopy.

Figure 1: Global double-
differences showing temperature 
dependence on surface emissivity 
using channels chosen to isolate 
the emissivity temperature-
dependence signal based on 
Pinkley et al.(1977): (left column) 
2-weeks global NOAA-20 CrIS 
data (O) versus CRTM model 
background calculations (B) using 
the IRSSE model v1.2 without 
temperature dependence, and 
(right column) simulated global 
double-differences showing 
temperature dependence on 
surface emissivity using T-dep 
optical constants derived from the 
Pinkley et al. (1977) laboratory 
measured reflectance ratios.
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Based on the Pinkley data digitation, a preliminary upgrade to the IRSSE model (v2.0) was 
performed, and an infrastructure was developed for testing (discussed more below). Like 
the previous model, the new model output is encapsulated in the form of a convenient 
multidimensional LUT, albeit expanded to include a fourth dimension, namely the surface 
temperature. The emissivity is thus expressed as a function of wave number ν, zenith 
angle θ0, surface wind speed ū, and surface temperature Ts. The initial results of from the 
preliminary model upgrade were encouraging.

Following this initial effort, the authors were made aware of the Rowe et al. (2020) data 
at the December 2020 International Space Science Institute (ISSI) Reference Quality Ocean 
Emissivity Model Team Meeting (English et al., 2020). Because of the suboptimal nature of 
the ad hoc Pinkley digitization, along with feedback from assimilation runs performed with 
NOAA/NCEP Global Data Assimilation System (GDAS) Gridpoint Statistical Interpolation 
(GSI) assimilation system (Kleist et al., 2009), another effort was made to assemble a 
T-dep dataset by merging the Rowe data with existing published datasets taken at room 
temperature (e.g., Pontier and Dechambenoy, 1966; Hale and Querry, 1973; Downing and 
Williams, 1975; Segelstein, 1981; Wieliczka et al., 1989; Bertie and Lan, 1996). The Rowe data 
contained one useful set of measurements for this purpose, namely values measured at 273 
K; values for temperatures between 273 K and existing published datasets taken at room 
temperatures (which ranged from 298–303 K) would then be obtained via interpolation. This 
led to another upgrade to the IRSSE model (v2.1), with seperate LUT generated for each of 
the sets of merged optical constants and two different wave slope PDF models (i.e., Cox and 
Munk, 1954; Ebuchi and Kizu, 2002).

As mentioned above, a testing/validation infrastructure was set up to test the new versions 
of the model, which consists of both offline and CRTM-implementations. The offline LUT are 
first tested using synthetic global data (based on NOAA89 radiosonde profiles), ship-based 
MAERI data, and global AIRS/ECMWF collocations using the kCARTA model (DeSouza-
Machado et al., 2020) in collaboration with Sergio DeSouza-Machado (UMBC). After going 
through these offline tests, the LUT are delivered to the CRTM Team for implementation 
within the CRTM Community Surface Emissivity Module (CSEM), which then allows 
testing within GSI assimilation runs.

Figure 2: Digital image scans 
of T-dep IR optical constants of 
water from the hard-bound copy 
of the Pinkley et al. (1977) paper 
(Figures 3 and 4, op. cit.) used 
for the initial ad hoc “data rescue” 
digitation; the real and imaginary 
parts of the complex refractive 
indices, Nν are shown on the left 
and right plots, respectively.
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High-resolution, well-calibrated IR spectra were obtained from two field campaigns, 
namely the 2017 Measurements of Aerosols, Radiation, and Clouds over the Southern Ocean 
(MARCUS)(Gero et al., 2019) (Fig. 3), and the 1996 Combined Sensor Program (CSP) (Post et 
al., 1997) campaigns. MARCUS was conducted over the Southern Ocean in cold waters and 
CSP over the Tropical Western Pacific Warm Pool (warm waters).

Figure 3: The ARM Mobile 
Facility-2 (AMF2) MAERI 
instrument deployed during the 
cold-water 2017 Measurements 
of Aerosols, Radiation, and 
Clouds over the Southern 
Ocean (MARCUS): (top left) the 
icebreaker RV Aurora Australis, 
(top right) view of MAERI on the 
deck, (bottom left) schematic 
of the MAERI observing 
configuration, and (bottom 
right) photo of the AMF2 MAERI 
showing the view port.

Figure 4: Longwave IR 
(LWIR) emissivity comparison 
between the IRSSE v2.1 (red), 
“conventional” emission-only 
(Masuda, 2006) (blue), and 
MAERI observations (black ±1σ 
uncertainty in the mean) obtained 
during the 2017 cold-water 
MARCUS campaign. The 6 plots 
are arranged in SST bins from 
cold to warmer waters; the mean 
SST and surface windspeeds are 
indicated in the titles. The model 
calculations here were based 
upon the Cox and Munk (1954) 
wave slope statistics.
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Figures 4 and 5 show comparisons of the IRSSE model upgrade (v2.1) based on merged 
optical constants, Rowe et al. (2020) with Downing and Williams (1975), versus the MAERI 
observations taken at θ0 = 65◦ emission angle from the MARCUS campaign. Note that in 
our comparisons against MAERI observations, both the SLR and downwelling atmospheric 
radiance are directly observed, and Ts is retrieved as described in Smith et al. (1996) and 
Hanafin and Minnett (2005). Figure 4 shows the direct comparison between the MAERI-
observed and modeled emissivities, εν , in the longwave IR (LWIR) window region, 750–1200 
cm−1 (≈ 8–13 µ m). These plots show the familiar spectral variation in water emissivity in the 
LWIR, but also show the underestimation of effective emissivity by conventional emission-
only models (Masuda, 2006) at larger observing angles. However, we can get a better sense 
for the magnitude of the errors in Fig. 5, which shows the calc − obs results in equivalent 
brightness temperatures. Here one may see the magnitude in the systematic underestimation 
of conventional emission-only models to be on the order of 0.1–0.4 K. However, one may 
also see the introduction of T-dep errors below 900 cm−1 for the colder water cases (i.e., the 
top 4 plots). It should be noted that most narrowband satellite imagers designed for accurate 
retrieval of SSTs incorporate a “split-window” with at least one channel sensitive to this 
portion of the spectrum; for example, the spectral response of Channel 16 of the JPSS VIIRS 
instrument spans approximately 815–876 cm−1.

4 Ongoing and Future Work

Based on feedback from GSI assimilation runs, there has remained some residual biases 
in the region of 880–920 cm−1 in both preliminary versions v2.0 and v2.1. Because of the 

Figure 5: As Fig. 4, except 
showing calc − obs and including 
the results from the v1.2 
IRSSE model, derived without 
temperature-dependence, for 
comparison (gold).
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sub-optimal approaches for obtaining temperature-dependent IR optical constants of water 
described above, we have now pursued a rigorous data-rescue using the Pinkley et al. (1977) 
measured reflectances, along with Kramers-Kronig (KK) analysis (e.g., Stegmann and Yang, 
2017) to derive temperature-dependent optical constants from existing datasets . Among 
other things, the electronic PDF reprint of their reflectance-ratio figure (Fig. 1, op. cit.) is 
legible and conducive to accurate digitization, which then allows for a direct derivation 
of T-dep optical constants (basically duplicating Pinkley’s methodology) for each of the 
existing standard datasets.

Based on these data, a new set of v2.2 IRSSE LUT have been generated, tested, and delivered 
to the CRTM team, with GSI assimilation tests to follow, along with additional MAERI 
validation based on data from the 2015 CalWater/ACAPEX campaign (e.g., Gero et al., 
2016). We also seek to facilitate implementation within other fast forward models, including 
SARTA, kCARTA, PCRTM, ISSI, among others. In the near-term we plan to publish the 
T-dep optical constants derived from the KK methodology as a journal note or letter (e.g., 
Optics Letters or IEEE-GRSL), noting that a new set of laboratory-measured IR optical 
constants of water could based upon this methodology, and may ultimately be desirable 
to minimize remaining residual temperature-dependent global biases in thermal IR surface 
window channels.
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It is a pleasure to present the Summer 2021 issue of the JCSDA Quarterly Newsletter. While 
many of us have enjoyed some well-deserved vacation time during the past couple of 
months, it is hard to tell from the relentless pace of activity. The JCSDA resumed its Annual 
Science and Technical Workshop virtually in early June, after foregoing the event in 2020 
due to the COVID-19 pandemic, reviewing not one but two years of scientific development. 

This issue features a pair of science articles. One, by Byoung-Joo Jung and co-authors,  
outlines the formulation of static background covariance within the framework of the Joint 
Effort for Data assimilation Integration for the US Air Force’s Model for Prediction Across 
Scales (MPAS.) This is an exciting early application using elements of JEDI in an operational 
modeling system. In the other, Nick Nalli and co-authors address the problem of sea-
surface properties as boundary conditions for numerical weather prediction systems with 
an improved infrared sea-surface emissivity model for the Community Radiative Transfer 
Model (CRTM.)  Both of these works were contributed to the JCSDA Symposium during the 
Annual AMS meeting in January, 2021, and invited for inclusion in the Quarterly to present 
them to a broader segment of our community than the virtual forum for that meeting was 
able to provide.  

The dynamic nature of the JCDSA’s mission is reflected in its workforce. This Summer we 
have bid farewell to some key contributors, including Dick Dee and Wei Han. But we also 
have welcomed new colleagues, including Eric Lingerfelt, Francois Herbert, Heli Soell, and 
Steven Vahl. Each of them has been kind enough to provide a short biographical sketch for 
this issue, so that you can get to know a little bit about them and the work that they are 
doing with the JCSDA. 

Jim Yoe

Editor

EDITOR’S NOTE
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Eric Lingerfelt
Eric Lingerfelt joined the JCSDA in April 2021 as a Software Engineer working in the JEDI 
core team. As a contributor to the Research Repository for Data and Diagnostics (R2D2), 
he supports JEDI users by designing and implementing tools to manipulate, ingest, access, 
and archive model data and observations in near real-time. In addition, Eric assists the JEDI 
team with management and maintenance of centralized R2D2 databases on several HPC 
platforms and the Amazon cloud. He is also involved with development and enhancement 
of the Experiments and Workflows Orchestration Kit (EWOK) system and Solo software 
package capabilities. 

Originally from a small mountain town in Tennessee between the Appalachian Trail and Dolly 
Parton’s birthplace in the Smoky Mountains, Eric received his undergraduate education at 
East Tennessee State University in mathematics and physics, where he conducted his senior 
year research at Kitt Peak National Observatory on the SARA 0.9-meter telescope near 
Tucson, Arizona. He received his Master of Science degree in physics with a concentration 
in astrophysics from the University of Tennessee in Knoxville and began his career as an 
Information Technology Specialist for UT’s Department of Physics and Astronomy in 
2003. From 2003 to 2009, he worked at Oak Ridge National Laboratory developing the 
Computational Infrastructure for Nuclear Astrophysics (CINA) SaaS platform, which 
provides over 100 easy-to-use online tools for stellar explosive studies of novae, x-ray 
bursts, and supernovae. CINA continues to assist the astrophysics community to this day, 
with registered users from over 40 countries and almost 200 institutions. 

In 2009, he accepted a position as a Technical Staff Member and Software Engineer at ORNL, 
where he led the design and implementation of several award-winning computational 
infrastructures in the areas of nuclear astrophysics, nanoscale materials science, Big Bang 
cosmology, supernovae modeling, environmental science, and isotope sales and distribution. 
These n-tier systems provided end-users with highly interactive, intuitive user interfaces 
enabling scientific data analysis, management, modeling, collaboration, and visualization in 
combination with secure web services, cloud resources, petabyte-scale storage, and several 
HPC platforms including Jaguar and Titan at the OLCF and Edison, Hopper, and Cori at 
NERSC. 

In 2017, Eric joined UCAR as EarthCube Technical Officer and Senior Software Engineer, 
where he led the design of technical architectures for the NSF EarthCube program and the 
implementation of the GeoCODES cyberinfrastructure platform enabling Earth science data 
providers and consumers to register, search, discover, and access resources from dozens of 
NSF data repositories using modern web standard methods and technologies. It was during 
this time that he founded Pandia Software (https://pandiasoftware.com) to continue 
his work developing and enhancing software platforms for US Department of Energy 
astrophysics initiatives. 

Eric currently resides in Fort Collins, Colorado with his partner Rowena. He enjoys playing 
bass guitar in the band “Jeebus Heathens,” disc golf, hiking, biking, fishing, archery, and 
tubing the Poudre River. He also enjoys the local breweries and distilleries and listening to 
music on vinyl records.

PEOPLE

https://pandiasoftware.com
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François Herbert
François Hebert joined the JCSDA in August 2021 as a Project Scientist on the JEDI model 
interfaces team and liaison to the NOAA EMC. His initial work will improve the modeling 
of satellite observation operators to help prepare JEDI for operational work at NOAA.

François is a computational physicist from a background in astronomy. He has studied 
sedimentation in the interior of white dwarf stars, explored shock-capturing algorithms for 
simulations of neutron stars and accretion discs around black holes, and used ray tracing to 
make visually accurate simulations of what two colliding black holes would look like to an 
(unfortunate?) nearby astronaut. He previously tested the waters of atmospheric science as 
an NCAR intern, and he’s thrilled to be returning to the field with the JCSDA.

François has rotated through hobbies ranging from classical piano to competitive ballroom 
dance. Most recently, he spends his free time cycling uphill in search of views of mountain 
layers fading into the hazy distance.

Heli Soell 
Heli Soell joined UCAR in June of 2021 as an Administrator assisting with the business 
operations of the JCSDA.  Her main duties include support in the areas of HR & general 
Administration, Procurement, Budgeting and Proposals.

A Boulder native, Heli received her BFA from NYU's Tisch School of the Arts for Dance 
and Musical Theater.  After knee injuries sidelined a career as a performer, she transitioned 
into the production world of film and television in Los Angeles, most notably as the 
Production Coordinator on NBC's "The Voice" for seasons 1-5.  Prior to leaving "The Voice" 
for a return to New York and live theater production, Heli danced for Kelly Clarkson's 
premiere performance of her hit holiday song "Underneath the Tree".  Back in New York, she 
continued to develop her administrative, project management and financial skills working 
for a number of internationally recognized arts venues and institutions including BAM 
(Brooklyn Academy of Music), The Shed and the Brooklyn Museum.  

While the 2020 pandemic brought Heli back to her hometown of Boulder, she's thrilled that 
she landed at UCAR and is excited to bring her unique perspective and love of coordination 
and numbers to the JCSDA team.  In her spare time, Heli is an avid reader, yogi and 
bottomless pit of true crime documentaries and podcasts.
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Steven Vahl 
Steven Vahl joined the JCSDA in Boulder in March 2021 as a Software Engineer on the JEDI 
core team. He is the team liaison to the United Kingdom Meteorological Office (Met Office 
or UKMO), working on the integration of the Met Office models with JEDI. Prior to that 
he worked at the National Center for Atmospheric Research (NCAR) for over two years, 
integrating the MPAS model with JEDI.

Steve has over 25 years of experience as a software engineer, mostly in the private sector. He 
worked for over 12 years developing software for portable near-infrared (NIR) spectrometers, 
including projects to identify minerals and pharmaceuticals by their NIR spectral signature. 
He has also worked in biotech and business management software.

Steve received his Bachelor’s degree in Mathematics from Washington University in 
St. Louis, and Master’s degree in Mathematics from the University of Illinois at Urbana-
Champaign. He is originally from Omaha, Nebraska and has now lived in Colorado for 
over 25 years.

Apart from work, Steve enjoys watching and discussing Marvel and Star Wars movies and 
shows with his two teenage sons. You will also frequently find him on a pickleball court. 

SCIENCE CALENDAR Meetings of Interest 

CAREER OPPORTUNITIES

TITLE DATE LOCATION WEBSITE

CRTM User and Developer Workshop TBD Virtual

International Precipitation Working 
Group

October  
18-22, 2021

Virtual https://www.isac.cnr.it/~ipwg/

10th AMS Symposium on the JCSDA January 
23-27, 2022

Houston, TX https://annual.ametsoc.org/index.cfm/2022/
program-events/conferences-and-sympo-
sia/10th-ams-symposium-on-the-joint-cen-
ter-for-satellite-data-assimilation-jcsda/

AMS JEDI Short Course January TBD TBD

JCSDA Annual Executive Team Retreat February 2022
TBD

TBD

International Symposium on Data 
Assimilation 

June 6-10, 2022 Fort Collins, CO https://www.cira.colostate.edu/conferences/
isda/

19th JCSDA Technical Review Meeting 
and Science Workshop

June 1, 2022,
TBD

TBD

Opportunities in support of JCSDA may be found at  
https://www.jcsda.org/opportunities as they become available.

https://www.isac.cnr.it/~ipwg/
https://annual.ametsoc.org/index.cfm/2022/program-events/conferences-and-symposia/10th-ams-symposium-on-the-joint-center-for-satellite-data-assimilation-jcsda/
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https://annual.ametsoc.org/index.cfm/2022/program-events/conferences-and-symposia/10th-ams-symposium-on-the-joint-center-for-satellite-data-assimilation-jcsda/
https://annual.ametsoc.org/index.cfm/2022/program-events/conferences-and-symposia/10th-ams-symposium-on-the-joint-center-for-satellite-data-assimilation-jcsda/
https://www.cira.colostate.edu/conferences/isda/
https://www.cira.colostate.edu/conferences/isda/
https://www.jcsda.org/opportunities
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